HTML, Excel, Word, SEOЖелезо ПК ⇒ Что такое кэш-память?

Железо ПК

Что внутри ПК
· Человек и математика
· Какие бывают компьютеры
· Как появился персональный компьютер
· Что такое "открытая архитектура" IBM
· IBM-архитектура
· Закрытая архитектура Apple
· Как работает компьютер
· Системный блок (корпус)
· Блок питания
· Что такое адаптеры
· Как работает клавиатура
· Как появился микропроцессор
· Процессоры i80286 (386) (486)
· Процессоры Pentium 2, Pentium 3
· Процессоры Pentium 4
· Процессоры Celeron
· Процессоры AMD
· Процессоры Athlon
· 64-разрядные Athlon
· Процессоры Duron, Sempron
· Материнская плата
· Разновидности системных плат
· Блок прерываний и CMOS-память
· Чипсет
· Оперативная память
· Как работает динамическая память
· Что такое кэш-память
· Что такое "винчестер"
· Технология SMART
· Какие бывают винчестеры
· Что такое FAT-таблица и кластер

 
Сабмит сайта в каталоги

Что такое кэш-память компьютера


Как уже упоминалось ранее, статическая оперативная память нашла применение в кэш-памяти. Основное достоинство статической памяти - это ее быстродействие. Основной недостаток - большой физический объем, занимаемый памятью и высокое энергопотребление.


Напомним, что ячейка статической памяти построена на транзисторном каскаде, который может содержать до 10 транзисторов. Поскольку, время переключения транзистора из одного состояния в другое ничтожно мало, то и скорость работы статической памяти высока.


Кэш-память имеет небольшой объем и размещается непосредственно на процессорном кристалле. Ее скорость работы гораздо выше, чем у динамической памяти (модули ОЗУ), но ниже, чем работают регистры общего назначения (РОН) центрального процессора.


Впервые кэш-память появилась на 386-х компьютерах и располагалась она на материнской плате. Материнские платы 386 DX имели кэш-память объемом от 64 до 256 Кб. 486-е процессоры уже имели кэш-память, расположенную на процессорном кристалле, но кэш-память на материнской плате была сохранена. Система кэш-памяти стала двухуровневой: память на кристалле стали называть кэшем первого уровня (L1), а на материнской плате - кэшем второго уровня (L2). Со временем кэш второго уровня "перебрался" на кристалл процессора. Первой это осуществила AMD на процессоре K6-III (L1 = 64 Kb, L2 = 256 Kb).

Наличие кэшей двух уровней потребовало создания механизма их взаимодействия между собой. Существует два варианта обмена информацией между кэш-памятью первого и второго уровня, или, как говорят, две кэш-архитектуры: инклюзивная и эксклюзивная.

Инклюзивная кэш-память

Инклюзивная архитектура предполагает дублирование информации, находящейся в L1 и L2.


Схема работы следующая. Во время копирования информации из ОЗУ в кэш делается две копии, одна копия заносится в L2, другая копия - в L1. Когда L1 полностью заполнен, информация замещается по принципу удаления наиболее "старых данных" - LRU (Least-Recently Used). Аналогично происходит и с кэшем второго уровня, но, поскольку его объем больше, то и информация хранится в нем дольше.


При считывании процессором информации из кэша, она берется из L1. Если нужной информации в кэше первого уровня нет, то она ищется в L2. Если нужная информация в кэше второго уровня найдена, то она дублируется в L1 (по принципу LRU), а затем, передается в процессор. Если нужная информация не найдена и в кэше второго уровня, то она считывается из ОЗУ по схеме, описанной выше.


Инклюзивная архитектура применяется в тех системах, где разница в объемах кэшей первого и второго уровня велика. Например, у Pentium 3 (Coppermine): L1 = 16 Kb, L2 = 256 Kb; Pentium 4: L1 = 16 Kb, L2 = 1024 Kb. В таких системах дублируется небольшая часть кэша второго уровня, это вполне приемлемая цена за простоту реализации инклюзивного механизма.

Эксклюзивная кэш-память

Эксклюзивная кэш-память предполагает уникальность информации, находящейся в L1 и L2.


При считывании информации из ОЗУ в кэш - информация сразу заносится в L1. Когда L1 заполнен, то, по принципу LRU информация переносится из L1 в L2.


Если при считывании процессором информации из L1 нужная информация не найдена, то она ищется в L2. Если нужная информация найдена в L2, то по принципу LRU кэши первого и второго уровня обмениваются между собой строками (самая "старая" строка из L1 помещается в L2, а на ее место записывается нужная строка из L2). Если нужная информация не найдена и в L2, то обращение идет к ОЗУ по схеме, описанной выше.


Эксклюзивная архитектура применяется в системах, где разность между объемами кэшей первого и второго уровня относительно невелика. Например, у Athlon XP: L1 = 64 Kb, L2 = 256 Kb. В эксклюзивной архитектуре кэш-память используется более эффективно, но схема реализации эксклюзивного механизма гораздо сложнее.

Взаимодействие кэш-памяти с ОЗУ

Поскольку, кэш-память работает очень быстро, то в кэш помещается информация, к которой часто обращается процессор - это значительно ускоряет его работу. Информация из ОЗУ помещается в кэш, а потом к ней обращается процессор. Существует несколько схем взаимодействия кэш-памяти и основной оперативной памяти.


Кэш-память с прямым отображением. Самый простой вариант взаимодействия кэша с ОЗУ. Объем ОЗУ делится на сегменты (страницы), по объему равные объему всего кэша (например, при объеме кэша 64 Кб и ОЗУ разбивается на страницы по 64 Кб). При взаимодействии кэша с ОЗУ, одна страница ОЗУ размещается в кэш-памяти, начиная с нулевого адреса (т.е., с самого начала кэша). При повторной операции взаимодействия, следующая страница накладывается поверх существующей - т.е., фактически прежние данные заменяются на текущие.


Достоинства: простая организация массива, минимальное время поиска.

Недостатки: неэффективное использование всего объема кэш-памяти - ведь вовсе не обязательно, что данные будут занимать весь объем кэша, они могут занимать и 10%, но следующая порция данных уничтожает предыдущую, таким образом, фактически имеем кэш с гораздо меньшим объемом.


Наборно-ассоциативная кэш-память. Весь объем кэша делится на несколько равных сегментов, кратных двойке в целой степени (2, 4, 8). Например, кэш 64 Кб может быть разделен на:

Pentium 3 и 4 имеют 8-канальную структуру кэша (кэш разбит на 8 сегментов); Athlon Thunderbird - 16-канальную.


При такой организации, ОЗУ делится на страницы, равные по объему одному сегменту кэша (одному кэш-банку). Страница ОЗУ пишется в первый кэш-банк; следующая страница - во второй кэш-банк и т.д., пока все кэш-банки не будут заполнены. Дальнейшая запись информации идет в тот кэш-банк, который не использовался дольше всего (содержит самую "старую" информацию).


Достоинства: повышается эффективность использования всего объема кэша - чем больше кэш-банков (выше ассоциативность), тем выше эффективность.

Недостатки: более сложная схема управления работой кэша; дополнительное время на анализ информации.


Ассоциативная кэш-память. Это предельный случай предыдущего варианта, когда объем кэш-банка становится равным одной строке кэш-памяти (дальше делить уже некуда). При этом любая строка ОЗУ может быть сохранена в любом месте кэш-памяти.


Запоминающий кэш-массив состоит из строк равной длины. Емкость такой строки равна размеру пакета, считываемого из ОЗУ за 1 цикл (например, Pentium 3 - 32 байта; Pentium 4 - 64 байта). Строка загружается в кэш и извлекается только целиком.


Достоинства: максимальная эффективность использования пространства кэш-памяти.

Недостатки: наибольшие затраты времени на поиск информации.



В начало страницы



В начало страницы